$\mathbf{L n}_{2} \mathbf{M o O}_{6}$-Type Rare Earth Molybdates-Preparation and Lattice Parameters

L. H. BRIXNER, A. W. SLEIGHT, and M. S. LICIS
Central Research Department,* E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received December 1, 1971

Abstract

The title compounds have been prepared for $\mathrm{Ln}=$ rare earth elements $58(\mathrm{Ce})$ through $71(\mathrm{Lu})$ as well as Y and La. They fall into three structural categories: the tetragonal $I 42 \mathrm{~m}$ space group for the large ions up to and including $\mathrm{Sm}_{2} \mathrm{MoO}_{6}$, which can also crystallize in the $C 2 / c$ symmetry found for the small rare earths; and an $\mathrm{Fm} 3 m$ related structure for $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$, which constitutes an exception in the series. Cell parameters are also given for $\mathrm{Gd}_{2} \mathrm{WO}_{6}$ and a series of $\mathrm{Gd}_{2-x} \mathrm{Bi}_{x} \mathrm{MoO}_{6}$ solid solutions.

Introduction

In conjunction with the ferroelectric Ln_{2} $\left(\mathrm{MoO}_{4}\right)_{3}$-type rare earth molybdates (1), Gd_{2} MoO_{6} has been of interest as an impurity component in single crystals of $\mathrm{Gd}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$. Together with all other rare earth compositions of the same type (except $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$) as well as the Y and La compounds, $\mathrm{Gd}_{2} \mathrm{MoO}_{6}$ has been discussed by Blasse (2). The structure of La_{2} MoO_{6} has been determined by Sillen (3). Blasse (2) postulated a structure for the small rare earth molybdates based on a monoclinic distortion of the $I \overline{4} 2 m$ symmetry of $\mathrm{La}_{2} \mathrm{MoO}_{6}$. While this appeared to be a reasonable approach, it was not unambiguous, lacking single-crystal data for these monoclinic compositions. We were also unable to index our Guinier patterns using Blasse's (2) parameters. One of the difficulties with the $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ type rare earth molybdates is the fact that they are highly refractory with melting points in the vicinity of $1600-2000^{\circ} \mathrm{C}$. Such melts are usually dark colored, because of at least a partial loss of oxygen, and would not be suitable for direct crystal growth via the Bridgeman or Czochralski technique. We therefore followed an alternative approach by substituting Bi for Gd in $\mathrm{Gd}_{2} \mathrm{MoO}_{6}$, thereby lowering the melting point. Although the range of existence for the monoclinic structure of these

[^0]solid solutions is rather limited, single crystals of this structure could be obtained by sintering at $1400^{\circ} \mathrm{C}$. Precession work with such single crystals indicated $C 2 / c$ or $C 2$ symmetry, and we were able to accurately index and refine all monoclinic patterns based on these findings.

It is the purpose of this paper to establish the range of the two principal structures, to present precision cell parameters based on least-squares refinement, and to describe $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$ as a new composition. The system $\mathrm{Gd}_{2-x} \mathrm{Bi}_{x} \mathrm{MoO}_{6}$ will also be discussed over a limited range of x.

Experimental

All compounds described in this paper were prepared by standard solid-statc techniques from Kerr-McGee 99.9% pure rare earth oxides and Molybdenum Company high purity MoO_{3}. Homogenized and pressed pellets were sintered finally in sealed Pt capsules between 1400 and $1600^{\circ} \mathrm{C} . \mathrm{Ce}_{2} \mathrm{MoO}_{6}$ was prepared via:

$$
6 \mathrm{CeO}_{2}+\mathrm{Mo}+2 \mathrm{MoO}_{3} \rightarrow 3 \mathrm{Ce}_{2} \mathrm{MoO}_{6}
$$

in sealed evacuated quartz ampoules. The starting oxide for $\mathrm{Pr}_{2} \mathrm{MoO}_{6}$ was black $\mathrm{Pr}_{6} \mathrm{O}_{11}$ which readily loses its excess oxygen at $1200^{\circ} \mathrm{C}$ as does $\mathrm{Tb}_{4} \mathrm{O}_{7}$, which was used to prepare $\mathrm{Tb}_{2} \mathrm{MoO}_{6}$. All other rare earth oxides are in the true sesquioxide state and were only prefired prior to use.

Small crystals of $\mathrm{Gd}_{1.70} \mathrm{Bi}_{0.30} \mathrm{MoO}_{6}$ were obtained by sintering polycrystalline material of this composition in sealed platinum capsules, fluctuating the temperature between 1400 and $1500^{\circ} \mathrm{C}$. Such crystals were examined by X-ray diffraction using a precession camera with Mo radiation. Powder patterns were obtained with a Hägg Guinier camera using $\mathrm{Cu} K \alpha$ radiation and an internal standard of $\mathrm{KCl}\left(a_{0}=6.2931 \AA\right.$ at $25^{\circ} \mathrm{C}$).

Results and Discussion

Although crystals of $\mathrm{Gd}_{1.70} \mathrm{Bi}_{30} \mathrm{MoO}_{6}$ were twinned, the space group appeared unambiguous as either $C c$ or $C 2 / c$ with $a=16.62 \AA, b=11.23$ $\AA, c=5.45 \AA$, and $\beta=108.6^{\circ}$. This cell satisfactorily indexed the Guinier pattern, and similar cells could be used to index all the monoclinic $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ phases. The refined cell dimensions are given in Table I.

A body-centered monoclinic cell can also be used to describe this structure. This cell appears to be related to the tetragonal cell found for $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ phases where Ln is large. Consequently, the dimensions of the body-centered
cell are also given in Table I. Its apparent relationship to the tetragonal cell is:

$$
\begin{aligned}
a_{M} & \sim \sqrt{2} \times a_{T} \\
b_{M} & \sim 2 \sqrt{2} \times a_{T} \\
c_{M} & \sim c_{T} .
\end{aligned}
$$

The most likely relationship of our body-centered cell with Blasse's interpretation is the following:

$$
\begin{aligned}
a_{M} & \sim b_{B} \\
b_{M} & \sim 2 / 3 \times c_{B} \\
c_{M} & \sim 3 \times a_{B} \\
\beta_{M} & \sim 180-\gamma_{B}
\end{aligned}
$$

The tetragonal $I \overline{4} 2 \mathrm{~m}$ structure extends from $\mathrm{La}_{2} \mathrm{MoO}_{6}$ to $\mathrm{Sm}_{2} \mathrm{MoO}_{6}$, and the refined cell dimensions of these phases are also given in Table I. Only $\mathrm{Sm}_{2} \mathrm{MoO}_{6}$ has been prepared in both tetragonal and monoclinic modifications. When prepared at $1400^{\circ} \mathrm{C}, \mathrm{Sm}_{2} \mathrm{MoO}_{6}$ has the tetragonal structure, and when prepared at $900^{\circ} \mathrm{C}$, the monoclinic structure is found. The transition from tetragonal to monoclinic is not merely a distortion because the tetragonal form is readily obtained at room temperature by air quenching. Thus, the transition is slow and

TABLE I
Refined Cell Dimensions, ${ }^{a}$ Space Groups, and Colors of the $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$-Type Rare Earth Molybdates

Ln	Space group	a, \AA	b, \AA	c, \AA	$\beta,{ }^{\circ}$	V, \AA^{3}	c^{\prime}, \AA	$\beta^{\prime},{ }^{\circ}$	Color
La	$I 42 m$	4.093		16.017		268.33			White
Ce	$F m 3 m$	5.578^{b}				173.55			Black
Pr	$I 42 m$	4.030		15.852		257.48		Green	
Nd		4.005		15.813		253.65		Blue	
Sm		3.963		15.686		246.36			
Sm	$C 2 / c$	5.470	11.272	15.791	90.92	973.5	16.628	108.28	
Eu		5.439	11.218	15.735	91.01	960.0	16.558	108.16	White
Gd		5.425	11.185	15.678	90.85	951.1	16.514	108.33	White
Tb		5.396	11.119	15.626	90.78	937.5	16.462	108.35	White
Dy		5.371	11.071	15.573	90.78	925.9	16.542	109.72	Yellow
Ho		5.349	11.028	15.516	90.65	915.2	16.469	109.60	Brown
Er	5.328	10.985	15.479	90.59	905.3	16.412	109.53	Pink	
Tm		5.310	10.933	15.419	90.48	895.1	16.266	108.57	White
Yb	5.290	10.895	15.387	90.35	886.8	16.240	108.66	White	
Lu		5.274	10.875	15.346	90.19	880.2	16.211	108.80	White
Y	5.351	11.022	15.510	90.67	914.7	16.466	109.63	White	

[^1]

Fig. 1. Cell volume vs. r^{3} for the tetragonal $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ compounds.
involves some rearrangement of atoms. Attempts to convert $\mathrm{Nd}_{2} \mathrm{MoO}_{6}$ to a monoclinic form by annealing for 60 hr at $600^{\circ} \mathrm{C}$ were unsuccessful. Likewise, attempts to convert $\mathrm{Eu}_{2} \mathrm{MoO}_{6}$ to a tetragonal form by quenching from $1600^{\circ} \mathrm{C}$ were unsuccessful. A sample of $\mathrm{Gd}_{2} \mathrm{MoO}_{6}$ was melted $\left(\sim 2000^{\circ} \mathrm{C}\right)$ with a torch flame and quenched. Its X-ray pattern appeared to be of the CaF_{2} type with $a=5.40 \AA$; however, the composition of this phase may differ slightly from $\mathrm{Gd}_{2} \mathrm{MoO}_{6}$.

Since the monoclinic modifications are more dense than the tetragonal modifications, we attempted to transform the tetragonal phases by quenching from 65 kbar and $1000^{\circ} \mathrm{C}$. The powder patterns of the products resembled the monoclinic type much more than the tetragonal type, but good indexings were not obtained.

The relationship between the cube of the ionic radii (4) and the cell volumes is given in Fig. 1

Fig. 2. Cell volume vs. r^{3} for the monoclinic $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ compounds.

TABLE II
Lattice Parameters for the $\mathrm{Gd}_{2-x} \mathrm{Bi}_{x} \mathrm{MoO}_{6}$ System

X	Composition	Space group	a, \AA	b, \AA	c, \AA	$\beta,{ }^{\circ}$	V
0.1	$\mathrm{Gd}_{1.9} \mathrm{Bi}_{0.1} \mathrm{MoO}_{6}$	$C 2 / c$	16.559	11.206	5.438	108.40	957.46
0.2	$\mathrm{Gd}_{1 . .8} \mathrm{Bi}_{0.2} \mathrm{MoO}_{6}$		16.59	11.218	5.447	108.523	961.72
0.3	$\mathrm{Gd}_{1.7} \mathrm{Bi}_{0.3} \mathrm{MoO}_{6}$		16.624	11.227	5.452	108.61	964.33
0.4	$\mathrm{Gd}_{1.6} \mathrm{Bi}_{0.4} \mathrm{MoO}_{6}$	$I 42 m$	3.941	-	15.690	-	243.67
0.5	$\mathrm{Gd}_{1.5} \mathrm{BiO}_{0.5} \mathrm{MoO}_{6}$		3.946	-	15.719	-	244.73
0.6	$\mathrm{Gd}_{1.6} \mathrm{Bi}_{0.4} \mathrm{MoO}_{6}$		3.948	-	15.738	-	245.32

TABLE III
Observed and Calculated d Values for $\mathbf{G d}_{2} \mathbf{M o O}_{6}$

I	hkl	d (obs)	d (calc)
10	110	9.068	9.104
10	200	7.813	7.837
10	310	4.723	4.734
5	111	4.160	4.167
15	-311	4.114	4.118
10	130	3.623	3.627
100	221	3.137	3.138
100	-421	3.105	3.106
10	330	3.033	3.034
5	510	3.018	3.018
20	-331	2.851	2.852
70	040	2.794	2.796
65	-202	2.710	2.712
60	600	2.612	2.612
5	421	2.453	2.454
10	331	2.427	2.427
2	530	2.403	2.399
5	022	2.339	2.338
5	511	2.314	2.316
5	241	2.249	2.250
2	-441	2.239	- 2.238
15	150	2.214	2.214
10	-332	2.168	2.168
10	350	2.056	2.056
2	312	2.031	2.031
20	-712	2.003	2.003
10	-731	1.982	1.982
5	800	1.957	1.959
80	-242	1.946	1.946
75	640	1.909	1.909
60	402	1.895	1.895
40	-802	1.868	1.867
15	-551	1.824	1.824
5	-732	1.787	1.787
10	-113	1.745	1.745
10	-513	1.734	1.734
15	-152	1.717	1.717
5	-423	1.707	1.707
50	261	1.672	1.672
45	-461	1.668	1.668
15	-931	1.646	1.645
50	023	1.641	1.640
36	-623	1.627	1.627
2	-713	1.614	1.615
45	-133	1.596	1.597
15	-533	1.588	1.588
40	-1021	1.584	1.583
40	442	1.569	1.569
10	-932	1.557	1.557
25	-842	1.553	1.553
10	062	1.510	1.509
10	-752	1.505	1.505
10	-371	1.503	1.503

for the tetragonal and in Fig. 2 for the monoclinic compounds.
To attempt to distinguish between the possible centrosymmetric $C 2 / c$ and the noncentrosymmetric $C 2$ space groups, we examined some $\mathrm{Gd}_{1.8} \mathrm{Bi}_{0.2} \mathrm{MoO}_{6}$ crystals for their piezoelectric response by the transmission method (5). As this test was negative, it tended to support the $C 2 / c$ space group. A more unambiguous distinction between the two possibilities was made by a second harmonic generation (SHG) test with the same compound. Since this test was also negative, we assume that $C 2 / c$ is the correct space group.

Many $\mathrm{Ln}_{2} \mathrm{WO}_{6}$ tungstates have the same structure found for the monoclinic $\mathrm{Ln}_{2} \mathrm{MoO}_{6}$ phases. For example, we find the refined bodycentered cell dimensions of $\mathrm{Gd}_{2} \mathrm{WO}_{6}$ to be $a=5.425 \AA, b=11.172 \AA, c=15.624 \AA, \beta=$ 91.60°, and $V=946.7 \AA^{3}$. This series constitutes one of the rare cases where the cell volumes of the tungstates are actually smaller than those of the corresponding isostructural molybdates. Precision cell edges of the remaining $\mathrm{Ln}_{2} \mathrm{WO}_{6}$ compounds will be the subject of a forthcoming

Fig. 3. Log resistivity vs. inverse temperature for $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$.
publication. The cell dimensions and space group for the $\mathrm{Gd}_{2-x} \mathrm{Bi}_{x} \mathrm{MoO}_{6}$ system over a limited region of x are summarized in Table II. Table III gives the observed and calculated d spacings for $\mathrm{Gd}_{2} \mathrm{MoO}_{6}$ using the C-centered cell.

While there appears to be no question as to the valence state of the rare earths in most of these compositions, it is not quite clear in $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$. Since the compound is black and a semiconductor, we are assuming at this point that a variable valence distribution such as $\mathrm{Ce}^{3+} \mathrm{Ce}^{4+} \mathrm{Mo}^{5+} \mathrm{O}_{6}$ is responsible for this behavior. It is also probable that this different distribution of valence states is responsible for the different structure observed for this compound. It is interesting to note that Ce^{3+} and Mo^{6+} are apparently compatible in a $1: 1.5$ ratio in a compound such as $\mathrm{Ce}_{2}^{3+}\left(\mathrm{Mo}^{6+} \mathrm{O}_{4}\right)_{3}$ (which is transparent, yellow, and an insulator) while the $2: 1$ ratio in $\mathrm{Ce}_{2} \mathrm{MoO}_{6}$ did cause a reduction of Mo^{6+} to Mo^{5+}. A typical resistivity vs. tempera-
ture plot is given in Fig. 3. The calculated activation energy is .21 eV .

Acknowledgment

The authors wish to thank Mr. J. W. Rooney for his assistance in preparing the samples and Mr. J. Gillson for measuring the resistivity. It is also a pleasure to acknowledge the cooperation of Professor L. E. Cross of the Pennsylvania State University who kindly ran the SHG test for us.

References

I. L. H. Brix.ver, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, Sth Mater. Res. Symp. Solid State Chem., Washington, D.C., October 1971.
2. G. Blasse, J. Inorg. Nucl. Chem. 28, 1488 (1966).
3. L. G. Sillen and K. Lendrorg, Z. Anorg. Allg. Chem. 252, 2 (1943).
4. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25, 925 (1969).
5. R. J. Blume, Rec. Sci. Instrum. 32, 598 (1961).

[^0]: * Contribution No. 1878.

[^1]: ${ }^{a}$ The unprimed values refer to the body-centered cell, and the primed values to the C -centered cell where $c^{\prime}=a$ and $b^{\prime}=b$. The $4-5 \AA$ edges are accurate to $\pm .001 \AA$, the $10-11 \AA$ edges to $\pm .002 \AA$, and the $15-16 \AA$ to $\pm .003 \AA$.
 ${ }^{b}$ This cell edge and space group only represents a subcell.

